首页> 外文OA文献 >Non-Clairvoyant Scheduling to Minimize Max Flow Time on a Machine with Setup Times
【2h】

Non-Clairvoyant Scheduling to Minimize Max Flow Time on a Machine with Setup Times

机译:非透视调度最小化机器上的最大流时间   设置时间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Consider a problem in which $n$ jobs that are classified into $k$ typesarrive over time at their release times and are to be scheduled on a singlemachine so as to minimize the maximum flow time. The machine requires a setuptaking $s$ time units whenever it switches from processing jobs of one type tojobs of a different type. We consider the problem as an online problem whereeach job is only known to the scheduler as soon as it arrives and where theprocessing time of a job only becomes known upon its completion(non-clairvoyance). We are interested in the potential of simple "greedy-like" algorithms. Weanalyze a modification of the FIFO strategy and show its competitiveness to be$\Theta(\sqrt{n})$, which is optimal for the considered class of algorithms.For $k=2$ types it achieves a constant competitiveness. Our main insight isobtained by an analysis of the smoothed competitiveness. If processing times$p_j$ are independently perturbed to $\hat p_j = (1+X_j)p_j$, we obtain acompetitiveness of $O(\sigma^{-2} \log^2 n)$ when $X_j$ is drawn from a uniformor a (truncated) normal distribution with standard deviation $\sigma$. Theresult proves that bad instances are fragile and "practically" one might expecta much better performance than given by the $\Omega(\sqrt{n})$-bound.
机译:考虑一个问题,其中归类为$ k $类型的$ n $个作业在其发布时会随时间到达,并计划在单台计算机上进行调度,以最大程度地减少最大流动时间。每当机器从一种类型的处理作业切换到另一种类型的作业时,它都需要以$ s $时间单位进行设置。我们认为该问题是一个在线问题,其中每个作业仅在调度程序到达后才知道,而作业的处理时间仅在完成后才知道(非透视)。我们对简单的“类似贪婪的”算法的潜力感兴趣。我们分析了FIFO策略的一种修改,并将其竞争力显示为$ \ Theta(\ sqrt {n})$,这对于所考虑的算法类别而言是最佳的。对于$ k = 2 $类型,它可以获得恒定的竞争力。我们的主要见解是通过对平滑竞争力的分析获得的。如果处理时间$ p_j $被独立地扰动到$ \ hat p_j =(1 + X_j)p_j $,则当绘制$ X_j $时,我们将获得$ O(\ sigma ^ {-2} \ log ^ 2 n)$的竞争力。从均值(标准的偏差$ \ sigma $)的均化器(截断的)正态分布中得到。结果证明,坏实例是易碎的,并且“实际”可能会比$ \ Omega(\ sqrt {n})$绑定给出的实例好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号